首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   158篇
  国内免费   383篇
化学   928篇
晶体学   29篇
力学   10篇
综合类   7篇
数学   2篇
物理学   173篇
  2024年   1篇
  2023年   25篇
  2022年   40篇
  2021年   95篇
  2020年   62篇
  2019年   57篇
  2018年   40篇
  2017年   61篇
  2016年   62篇
  2015年   51篇
  2014年   69篇
  2013年   66篇
  2012年   49篇
  2011年   52篇
  2010年   39篇
  2009年   42篇
  2008年   35篇
  2007年   51篇
  2006年   44篇
  2005年   23篇
  2004年   30篇
  2003年   31篇
  2002年   23篇
  2001年   15篇
  2000年   10篇
  1999年   15篇
  1998年   14篇
  1997年   10篇
  1996年   6篇
  1995年   9篇
  1993年   6篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1149条查询结果,搜索用时 31 毫秒
91.
以纳米Si颗粒为核心,正硅酸四乙酯(TEOS)为SiO_2源,采用Stober法在Si表面包覆一层SiO_2,再以多巴胺为碳源,通过碳化处理将SiO_2表面的聚多巴胺层转化成碳层。最后,用HF刻蚀SiO_2并留下空隙,得到Si@void@C复合纳米颗粒。利用X射线衍射、扫描电镜、透射电镜和恒流充放电测试对材料的物相、微观形貌和电化学性能进行表征。结果表明,在0.1 A·g~(-1)电流密度下,Si@void@C负极材料充放电循环100次后充电比容量仍然有1 319.5 mAh·g~(-1),容量保持率为78.4%,表现出优异的电化学性能。  相似文献   
92.
In this study, a new facile preparation method of nanocomposites consisting of graphene oxide and manganese dioxide nanowires(GO/MnO_2 NW_s) was developed. The morphology, structure and composition of the resulted products were characterized by transmission electron microscopy, X-ray diffraction and N_2 adsorption and desorption. The GO/MnO_2 nanocomposite was used as an electrode material for non-enzymatic determination of hydrogen peroxide. The proposed sensor exhibits excellent electrocatalytic performance for the determination of hydrogen peroxide in phosphate buffer solution(PBS, pH7) at an applied potential of 0.75 V. The non-enzymatic biosensor for determination of hydrogen peroxide displayed a wide linear range of 4.90 mmol L~(-1)–4.50 mmol L~(-1)with a correlation coefficient of 0.9992, a low detection limit of 0.48 mmol L~(-1) and a high sensitivity of 191.22μA(mmol L~(-1))~(-1)cm~(-2)(signal/noise, S/N = 3). Moreover, the non-enzymatic biosensor shows an excellent selectivity.  相似文献   
93.
选择合适的生物质材料是获得功能碳材料的有效途径之一。通过柠檬酸钾和三聚氰胺一步热解法制备高氮掺杂多孔碳纳米纤维(NPCF)。在电流密度为0.1和1.0 A·g-1时,NPCF电极的容量分别为218和140 mAh·g-1。同时,具有NPCF阳极的钠离子电容器(SIC)在1.0 A·g-1下表现出优异的倍率性能和超长的使用寿命,可循环超过2 500次。  相似文献   
94.
利用具有三维连续纳米孔结构的热剥离石墨烯为骨架制备Li4Ti5O12/石墨烯纳米复合材料。通过乙醇挥发法在热剥离石墨烯的纳米孔道内引入前驱物, 进一步高温热处理, 在热剥离石墨烯的孔道内原位形成Li4Ti5O12纳米粒子。利用复合材料作为锂离子电池电极材料。电化学反应过程中, 热剥离石墨烯的三维连续结构确保了Li4Ti5O12纳米粒子与石墨烯在长循环过程中的有效接触。因此, 复合材料表现出优异的循环稳定性。在5C下, 5 000次循环后, 其容量保持率高达94%。  相似文献   
95.
以天然石墨为原料,通过机械高速分散设备将天然石墨和AlF3在液相介质中充分混合,混合液喷雾干燥后获得颗粒形态均匀分散的AlF3包覆天然石墨(NG)复合负极材料(AF/NG)。一方面AlF3包覆层有助于在天然石墨表面形成稳定的SEI膜,提升材料的循环稳定性;另一方面AlF3的引入改善了锂离子在天然石墨内外的迁移与扩散,提升复合材料的倍率性能,0.5C倍率下放电比容量达到278 mAh·g-1,同等倍率下比未包覆AlF3样品提高了78 mAh·g-1。合成工艺简单易管控,适合规模化商业生产。  相似文献   
96.
使用廉价的硅铝合金前驱体,通过简单的化学沉积方法制备了新型双金属(Sn/Ni)掺杂多孔硅微球(pSi@SnNi)。pSi@SnNi复合材料的三维多孔结构可以缓冲硅在锂化过程中的巨大体积膨胀,增加储锂活性位点。双金属(Sn/Ni)的掺杂可以提高硅的电子导电性,改进pSi的结构稳定性。由于其独特的组成和微观结构,具有适当Sn/Ni含量的pSi@SnNi复合材料显示了较大的可逆储锂容量(0.1 A·g-1下为2 651.7 mAh·g-1)、较高的电化学循环稳定性(1 A·g-1下400次循环后为1 139 mAh·g-1)和优异的倍率性能(2.5 A·g-1下为1 235.8 mAh·g-1)。  相似文献   
97.
利用恒流充放电、循环伏安、交流阻抗、SEM、EDS等测试技术研究了在锂离子电池石墨负极和浆过程中加入NaBF4对其电化学性能的影响。结果表明:NaBF4的最佳添加量为2%,可明显提高石墨电极的首次放电比容量和充放电效率;电极的自放电性能和循环稳定性得到明显改善。室温条件下,添加了2% NaBF4的电极以放电容量计算的自放电率为0.87%·d-1,比未添加时降低了15%;循环伏安、EDS以及SEM测试结果表明,四氟硼酸钠参与了石墨电极的成膜过程,改变了SEI膜的组分和形貌。  相似文献   
98.
将低温水热反应和低温热处理相结合,制备了含还原氧化石墨烯(RGO)、碳纳米管(CNTs)和Co3O4的三元纳米复合材料RGO-CNTs-Co3O4;利用X射线衍射仪、扫描电子显微镜、透射电子显微镜分析了合成产物的相组成和微观结构,分析了其形成过程;并利用电化学测试装置测定了其作为锂离子电池负极材料的电化学性能.结果表明,在合成反应过程中,氧化石墨烯被还原剂肼还原为石墨烯,同时在石墨烯和CNTs表面生成氢氧化钴;再经低温热处理得到RGO-CNTs-Co3O4三元复合材料.Co3O4纳米颗粒均匀分散在由RGO片层和CNTs组成的三维网络结构中;这种三维网络结构既有利于电子和离子的传输,又能够有效抑制Co3O4在脱嵌锂过程中因体积变化引起的结构破坏.总体而言,合成的新型三元复合材料具有高的比容量以及良好的循环性能与倍率性能.  相似文献   
99.
采用水热合成法,合成了比表面积为175 m2·g-1,孔径在2~4nm范围内的扫帚状CeO2。通过微波辅助乙二醇还原氯铂酸法制备了Pt-CeO2/RGO催化剂,探究扫帚状CeO2的添加对Pt基催化剂电催化性能的影响。利用X射线衍射仪(XRD)、扫描电镜(SEM)、N2吸附-脱附、X射线光电子能谱(XPS)对所制备的CeO2及催化剂进行表征。利用电化学工作站对催化剂进行电化学性能测试。结果表明,催化剂中CeO2保持原有扫帚状,Pt纳米粒子均匀分布于石墨烯载体表面;当mRGOmCeO2=1∶2时,添加了扫帚状CeO2的Pt-CeO2/RGO催化剂的电催化性能最优,电化学活性表面积为102.83 m2·g-1,对乙醇氧化的峰值电流密度为757.17 A·g-1,1 000 s的稳态电流密度为108.17 A·g-1,对乙醇催化氧化反应的电荷转移电阻最小,活化能最低。  相似文献   
100.
利用具有三维连续纳米孔结构的热剥离石墨烯为骨架制备Li4Ti5O12/石墨烯纳米复合材料。通过乙醇挥发法在热剥离石墨烯的纳米孔道内引入前驱物,进一步高温热处理,在热剥离石墨烯的孔道内原位形成Li4Ti5O12纳米粒子。利用复合材料作为锂离子电池电极材料。电化学反应过程中,热剥离石墨烯的三维连续结构确保了Li4Ti5O12纳米粒子与石墨烯在长循环过程中的有效接触。因此,复合材料表现出优异的循环稳定性。在5C下,5 000次循环后,其容量保持率高达94%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号